Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.610
Filtrar
1.
Am Soc Clin Oncol Educ Book ; 44(3): e432516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560815

RESUMO

Druggable oncogene-driven non-small cell lung cancer has led to innovative systemic treatment options, improving patients' outcome. This benefit is not only achieved in the metastatic setting but also in the postsurgical setting, such as in lung cancers harboring a common sensitizing EGFR mutation or ALK-rearrangement. To enhance the outcome of these patients, we need to understand the mechanisms of acquired resistance and evaluate the role of new drugs with novel mechanisms of action in the treatment landscape. In this chapter, we review treatment strategies of EGFR-mutant tumors in all stages, the mechanisms of acquired strategies, and novel therapies in this subset.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Quinase do Linfoma Anaplásico/genética , Receptores ErbB/genética , Mutação , Oncogenes , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
2.
Methods Mol Biol ; 2797: 211-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570462

RESUMO

Missense mutations in the RAS family of oncogenes (HRAS, KRAS, and NRAS) are present in approximately 20% of human cancers, making RAS a valuable therapeutic target (Prior et al., Cancer Res 80:2969-2974, 2020). Although decades of research efforts to develop therapeutic inhibitors of RAS were unsuccessful, there has been success in recent years with the entrance of FDA-approved KRASG12C-specific inhibitors to the clinic (Skoulidis et al., N Engl J Med 384:2371-2381, 2021; Jänne et al., N Engl J Med 387:120-131, 2022). Additionally, KRASG12D-specific inhibitors are presently undergoing clinical trials (Wang et al., J Med Chem 65:3123-3133, 2022). The advent of these allele specific inhibitors has disproved the previous notion that RAS is undruggable. Despite these advancements in RAS-targeted therapeutics, several RAS mutants that frequently arise in cancers remain without tractable drugs. Thus, it is critical to further understand the function and biology of RAS in cells and to develop tools to identify novel therapeutic vulnerabilities for development of anti-RAS therapeutics. To do this, we have exploited the use of monobody (Mb) technology to develop specific protein-based inhibitors of selected RAS isoforms and mutants (Spencer-Smith et al., Nat Chem Biol 13:62-68, 2017; Khan et al., Cell Rep 38:110322, 2022; Wallon et al., Proc Natl Acad Sci USA 119:e2204481119, 2022; Khan et al., Small GTPases 13:114-127, 2021; Khan et al., Oncogene 38:2984-2993, 2019). Herein, we describe our combined use of Mbs and NanoLuc Binary Technology (NanoBiT) to analyze RAS protein-protein interactions and to screen for RAS-binding small molecules in live-cell, high-throughput assays.


Assuntos
Luciferases , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes , Comunicação Celular , Mutação
3.
Bioorg Med Chem ; 104: 117713, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574409

RESUMO

In this study, we developed a promising dual-function fluorescent ligand termed KS-1 by a slight structural modification on a reported carbazole-based scaffold. KS-1 was then found to mainly bind and illuminate the nuclear DNA G-quadruplexes (G4s) in a sandwich-like interacting mode, and also effectively modulate the oncogene expression through a G4-mediated manner. Furthermore, KS-1 was proved to inhibit cancer cell growth either in 2D monolayer cells or 3D multicellular tumor spheroids. To be noted, this ligand could overcome the shortcomings of other reported dual-function ligands that appeared to accumulate in the lysosomes or mitochondria, and may be used as a theranostic agent in the future.


Assuntos
Quadruplex G , Ligantes , Oncogenes , Corantes
4.
World J Gastroenterol ; 30(9): 1224-1236, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577190

RESUMO

BACKGROUND: As a critical early event in hepatocellular carcinogenesis, telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma (HCC) patients, and its function in the genesis and treatment of HCC has gained much attention over the past two decades. AIM: To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase. METHODS: The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to "articles" and "reviews" published in English. A total of 873 relevant publications related to HCC and telomerase were identified. We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications, such as the trends in the publications, citation counts, most prolific or influential writers, and most popular journals; to screen for keywords occurring at high frequency; and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences. VOSviewer was utilized to compile and visualize the bibliometric data. RESULTS: A surge of 51 publications on HCC/telomerase research occurred in 2016, the most productive year from 1996 to 2023, accompanied by the peak citation count recorded in 2016. Up to December 2023, 35226 citations were made to all publications, an average of 46.6 citations to each paper. The United States received the most citations (n = 13531), followed by China (n = 7427) and Japan (n = 5754). In terms of national cooperation, China presented the highest centrality, its strongest bonds being to the United States and Japan. Among the 20 academic institutions with the most publications, ten came from China and the rest of Asia, though the University of Paris Cité, Public Assistance-Hospitals of Paris, and the National Institute of Health and Medical Research (INSERM) were the most prolific. As for individual contributions, Hisatomi H, Kaneko S, and Ide T were the three most prolific authors. Kaneko S ranked first by H-index, G-index, and overall publication count, while Zucman-Rossi J ranked first in citation count. The five most popular journals were the World Journal of Gastroenterology, Hepatology, Journal of Hepatology, Oncotarget, and Oncogene, while Nature Genetics, Hepatology, and Nature Reviews Disease Primers had the most citations. We extracted 2293 keywords from the publications, 120 of which appeared more than ten times. The most frequent were HCC, telomerase and human telomerase reverse transcriptase (hTERT). Keywords such as mutational landscape, TERT promoter mutations, landscape, risk, and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years. CONCLUSION: Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Oncogenes , Bibliometria
5.
Cancer Discov ; 14(4): 605-609, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571416

RESUMO

We explore the phenomenon of somatic mutations, including those in cancer driver genes, that are present in healthy, normal-appearing tissues and their potential implications for cancer development. We also examine the landscape of these somatic mutations, discuss the role of clonal cell competition and external factors like inflammation in enhancing the fitness of mutant clones, and conclude by considering how understanding these mutations will aid in prevention and/or interception of cancer.


Assuntos
Neoplasias , Oncogenes , Humanos , Mutação , Neoplasias/genética
6.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612755

RESUMO

Glypicans are linked to various aspects of neoplastic behavior, and their therapeutic value has been proposed in different cancers. Here, we have systematically assessed the impact of GPC4 on cancer progression through functional genomics and transcriptomic analyses across a broad range of cancers. Survival analysis using TCGA cancer patient data reveals divergent effects of GPC4 expression across various cancer types, revealing elevated GPC4 expression levels to be associated with both poor and favorable prognoses in a cancer-dependent manner. Detailed investigation of the role of GPC4 in glioblastoma and non-small cell lung adenocarcinoma by genetic perturbation studies displays opposing effects on these cancers, where the knockout of GPC4 with CRISPR/Cas9 attenuated proliferation of glioblastoma and augmented proliferation of lung adenocarcinoma cells and the overexpression of GPC4 exhibited a significant and opposite effect. Further, the overexpression of GPC4 in GPC4-knocked-down glioblastoma cells restored the proliferation, indicating its mitogenic effect in this cancer type. Additionally, a survival analysis of TCGA patient data substantiated these findings, revealing an association between elevated levels of GPC4 and a poor prognosis in glioblastoma, while indicating a favorable outcome in lung carcinoma patients. Finally, through transcriptomic analysis, we attempted to assign mechanisms of action to GPC4, as we find it implicated in cell cycle control and survival core pathways. The analysis revealed upregulation of oncogenes, including FGF5, TGF-ß superfamily members, and ITGA-5 in glioblastoma, which were downregulated in lung adenocarcinoma patients. Our findings illuminate the pleiotropic effect of GPC4 in cancer, underscoring its potential as a putative prognostic biomarker and indicating its therapeutic implications in a cancer type dependent manner.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Glioblastoma , Neoplasias Pulmonares , Humanos , Glipicanas/genética , Glioblastoma/genética , Oncogenes , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética
7.
Int J Oncol ; 64(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639179

RESUMO

The exosomal pathway is an essential mechanism that regulates the abnormal content of microRNAs (miRNAs) in hepatocellular carcinoma (HCC). The directional transport of miRNAs requires the assistance of RNA­binding proteins (RBPs). The present study found that RBPs participate in the regulation of miRNA content through the exosomal pathway in HCC cells. First, differential protein expression profiles in the serum exosomes of patients with HCC and benign liver disease were detected using mass spectrometry. The results revealed that ribosomal protein L9 (RPL9) was highly expressed in serum exosomes of patients with HCC. In addition, the downregulation of RPL9 markedly suppressed the proliferation, migration and invasion of HCC cells and reduced the biological activity of HCC­derived exosomes. In addition, using miRNA microarrays, the changes in exosomal miRNA profiles in HCC cells caused by RPL9 knockdown were examined. miR­24­3p and miR­185­5p were most differentially expressed, as verified by reverse transcription­quantitative PCR. Additionally, using RNA immunoprecipitation, it was found that RPL9 was directly bound to the two miRNAs and immunofluorescence assays confirmed that RPL9 was able to carry miRNAs into recipient cells via exosomes. Overexpression of miR­24­3p in cells increased the accumulation of miR­24­3p in exosomes and simultaneously upregulated RPL9. Excessive expression of miR­24­3p in exosomes also increased their bioactivity. Exosome­mediated miRNA regulation and transfer require the involvement of RBPs. RPL9 functions as an oncogene, can directly bind to specific miRNAs and can be co­transported to receptor cells through exosomes, thereby exerting its biological functions. These findings provide a novel approach for modulating miRNA profiles in HCC.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , MicroRNAs , Proteínas Ribossômicas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes/genética , Proteínas Ribossômicas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
PLoS One ; 19(4): e0300626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573998

RESUMO

BACKGROUND: Cuproptosis is a recently discovered type of cell death, but the role and behavior of cuproptosis-related genes (CuRGs) in cancers remain unclear. This paper aims to address these issues by analyzing the multi-omics characteristics of cancer-related genes (CuRGs) across various types of cancer. METHOD: To investigate the impact of somatic copy number alterations (SCNA) and DNA methylation on CRG expression, we will analyze the correlation between these factors. We developed a cuproptosis index (CPI) model to measure the level of cuproptosis and investigate its functional roles. Using this model, we assessed the clinical prognosis of colorectal cancer patients and analyzed genetic changes and immune infiltration features in different CPI levels. RESULTS: The study's findings indicate that the majority of cancer-related genes (CuRGs) were suppressed in tumors and had a positive correlation with somatic copy number alterations (SCNA), while having a negative correlation with DNA methylation. This suggests that both SCNA and DNA methylation have an impact on the expression of CuRGs. The CPI model is a reliable predictor of survival outcomes in patients with colorectal cancer and can serve as an independent prognostic factor. Patients with a higher CPI have a worse prognosis. We conducted a deeper analysis of the genetic alterations and immune infiltration patterns in both CPI positive and negative groups. Our findings revealed significant differences, indicating that CuRGs may play a crucial role in tumor immunity mechanisms. Additionally, we have noticed a positive correlation between CuRGs and various crucial pathways that are linked to the occurrence, progression, and metastasis of tumors. CONCLUSIONS: Overall, our study systematically analyzes cuproptosis and its regulatory genes, emphasizing the potential of using cuproptosis as a basis for cancer therapy.


Assuntos
Neoplasias Colorretais , Oncogenes , Humanos , Análise de Sistemas , Morte Celular , Metilação de DNA , Neoplasias Colorretais/genética , Apoptose , Cobre
9.
Nat Commun ; 15(1): 3335, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637555

RESUMO

Understanding the function of rare non-coding variants represents a significant challenge. Using MapUTR, a screening method, we studied the function of rare 3' UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare gnomAD variants, an average of 24.5% were functional, with 70% in cancer-related genes, many in critical cancer pathways. This observation motivated an interrogation of 11,929 somatic mutations, uncovering 3928 (33%) functional mutations in 155 cancer driver genes. Functional MapUTR variants were enriched in microRNA- or protein-binding sites and may underlie outlier gene expression in tumors. Further, we introduce untranslated tumor mutational burden (uTMB), a metric reflecting the amount of somatic functional MapUTR variants of a tumor and show its potential in predicting patient survival. Through prime editing, we characterized three variants in cancer-relevant genes (MFN2, FOSL2, and IRAK1), demonstrating their cancer-driving potential. Our study elucidates the function of tens of thousands of non-coding variants, nominates non-coding cancer driver mutations, and demonstrates their potential contributions to cancer.


Assuntos
Neoplasias , Oncogenes , Humanos , Regiões 3' não Traduzidas/genética , RNA Mensageiro/genética , Mutação , Neoplasias/genética
10.
Zhonghua Zhong Liu Za Zhi ; 46(3): 211-220, 2024 Mar 23.
Artigo em Chinês | MEDLINE | ID: mdl-38494768

RESUMO

Antibody-drug conjugates (ADCs) are drugs that combine monoclonal antibody drugs targeting specific antigens and small molecule cytotoxic drugs through linker molecules. ADCs combine the advantages of high specificity targeting and potent killing effects, achieving precise and efficient targeting of cancer cells. Nowadays, ADCs are one of the hotspots in cancer drug development. Human epidermal growth factor receptor 2 (HER-2) is a known oncogene that can drive the occurrence and development of various types of tumors. HER-2 is also an important tumor target for ADCs approved for solid tumors. Anti-HER-2 ADCs can not only be used to treat HER-2-positive tumors but also effectively target HER-2-low tumors. The emergence of ADCs has broken the traditional classification of HER-2 in tumors, bringing significant treatment breakthroughs for HER-2-low tumors. Anti-HER-2 ADCs are widely used in the treatment of solid tumors and have substantial evidence for HER-2-low tumors. This article presents the progress of various anti-HER-2 ADCs in HER-2-low tumors including breast cancer, gastrointestinal malignancies, urothelial carcinoma, lung cancer. And this article summarizes the current status of preclinical studies, clinical studies, and safety of anti-HER-2 ADCs in order to provide reference for the clinical use of HER-2-low tumors.


Assuntos
Antineoplásicos , Carcinoma de Células de Transição , Imunoconjugados , Receptor ErbB-2 , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Oncogenes
11.
BMC Cancer ; 24(1): 385, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532312

RESUMO

Gliomas are the most common primary intracranial tumor worldwide. The maintenance of telomeres serves as an important biomarker of some subtypes of glioma. In order to investigate the biological role of RTEL1 in glioma. Relative telomere length (RTL) and RTEL1 mRNA was explored and regression analysis was performed to further examine the relationship of the RTL and the expression of RTEL1 with clinicopathological characteristics of glioma patients. We observed that high expression of RTEL1 is positively correlated with telomere length in glioma tissue, and serve as a poor prognostic factor in TERT wild-type patients. Further in vitro studies demonstrate that RTEL1 promoted proliferation, formation, migration and invasion ability of glioma cells. In addition, in vivo studies also revealed the oncogene role of RTEL1 in glioma. Further study using RNA sequence and phospho-specific antibody microarray assays identified JNK/ELK1 signaling was up-regulated by RTEL1 in glioma cells through ROS. In conclusion, our results suggested that RTEL1 promotes glioma tumorigenesis through JNK/ELK1 cascade and indicate that RTEL1 may be a prognostic biomarker in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/patologia , Neoplasias Encefálicas/genética , Transformação Celular Neoplásica/genética , Oncogenes , Biomarcadores , Proliferação de Células , Proteínas Elk-1 do Domínio ets/genética , DNA Helicases/genética
12.
Aging (Albany NY) ; 16(5): 4469-4502, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38441550

RESUMO

BACKGROUND: Prostate cancer is the most common malignancy among men worldwide, and its diagnosis and treatment are challenging due to its heterogeneity. METHODS: Integrating single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we identified two molecular subtypes of prostate cancer based on dysregulated genes involved in oxidative stress and energy metabolism. We constructed a risk score model (OMR) using common differentially expressed genes, which effectively evaluated prostate cancer prognosis. RESULTS: Our analysis demonstrated a significant correlation between the risk score model and various factors, including tumor immune microenvironment, genomic variations, chemotherapy resistance, and immune response. Notably, patients with low-risk scores exhibited increased sensitivity to chemotherapy and immunotherapy compared to those with high-risk scores, indicating the model's potential to predict patient response to treatment. Additionally, our investigation of MXRA8 in prostate cancer showed significant upregulation of this gene in the disease as confirmed by PCR and immunohistochemistry. Functional assays including CCK-8, transwell, plate cloning, and ROS generation assay demonstrated that depletion of MXRA8 reduced the proliferative, invasive, migratory capabilities of PC-3 cells, as well as their ROS generation capacity. CONCLUSIONS: Our study highlights the potential of oxidative stress and energy metabolism-related genes as prognostic markers and therapeutic targets in prostate cancer. The integration of scRNA-seq and bulk RNA-seq data enables a better understanding of prostate cancer heterogeneity and promotes personalized treatment development. Additionally, we identified a novel oncogene MXRA8 in prostate cancer.


Assuntos
Oncogenes , Neoplasias da Próstata , Humanos , Masculino , Metabolismo Energético/genética , Estresse Oxidativo/genética , Prognóstico , Neoplasias da Próstata/genética , Espécies Reativas de Oxigênio , Microambiente Tumoral/genética , Proteínas de Membrana/genética , Imunoglobulinas/genética
13.
Commun Biol ; 7(1): 266, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438584

RESUMO

Long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) is an oncogene found in various human cancers. However, it is unclear what role SNHG5 plays in activating hepatic stellate cells (HSCs) and liver fibrosis. In this study, SNHG5 was found to be upregulated in activated HSCs in vitro and in primary HSCs isolated from fibrotic liver in vivo, and inhibition of SNHG5 suppressed HSC activation. Notably, Neurofibromin 2 (NF2), the main activator for Hippo signalling, was involved in the effects of SNHG5 on HSC activation. The interaction between SNHG5 and NF2 protein was further confirmed, and preventing the combination of the two could effectively block the effects of SNHG5 inhibition on EMT process and Hippo signaling. Additionally, higher SNHG5 was found in chronic hepatitis B patients and associated with the fibrosis stage. Altogether, we demonstrate that SNHG5 could serve as an activated HSCs regulator via regulating NF2 and Hippo pathway.


Assuntos
Neurofibromina 2 , RNA Longo não Codificante , Humanos , Células Estreladas do Fígado , Via de Sinalização Hippo , Cirrose Hepática/genética , Neurofibromina 2/genética , Oncogenes , RNA Longo não Codificante/genética
14.
BMC Bioinformatics ; 25(1): 99, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448819

RESUMO

BACKGROUND: Cancer, a disease with high morbidity and mortality rates, poses a significant threat to human health. Driver genes, which harbor mutations accountable for the initiation and progression of tumors, play a crucial role in cancer development. Identifying driver genes stands as a paramount objective in cancer research and precision medicine. RESULTS: In the present work, we propose a method for identifying driver genes using a Generalized Linear Regression Model (GLM) with Shrinkage and double-Weighted strategies based on Functional Impact, which is named GSW-FI. Firstly, an estimating model is proposed for assessing the background functional impacts of genes based on GLM, utilizing gene features as predictors. Secondly, the shrinkage and double-weighted strategies as two revising approaches are integrated to ensure the rationality of the identified driver genes. Lastly, a statistical method of hypothesis testing is designed to identify driver genes by leveraging the estimated background function impacts. Experimental results conducted on 31 The Cancer Genome Altas datasets demonstrate that GSW-FI outperforms ten other prediction methods in terms of the overlap fraction with well-known databases and consensus predictions among different methods. CONCLUSIONS: GSW-FI presents a novel approach that efficiently identifies driver genes with functional impact mutations using computational methods, thereby advancing the development of precision medicine for cancer.


Assuntos
Neoplasias , Oncogenes , Humanos , Mutação , Cognição , Consenso , Bases de Dados Factuais , Neoplasias/genética
15.
Front Immunol ; 15: 1295305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481990

RESUMO

Introduction: Ubiquitination is a crucial biological mechanism in humans, essential for regulating vital biological processes, and has been recognized as a promising focus for cancer therapy. Our objective in this research was to discover potential enzymes associated with ubiquitination that may serve as therapeutic targets for individuals with esophageal carcinoma (ESCA). Methods: To identify genes linked to the prognosis of ESCA, we examined mRNA sequencing data from patients with ESCA in the TCGA database. Further investigation into the role of the candidate gene in ESCA was conducted through bioinformatic analyses. Subsequently, we carried out biological assays to assess its impact on ESCA development. Results: Through univariate Cox regression analysis, we identified Ubiquitin Conjugating Enzyme E2 B (UBE2B) as a potential gene associated with the prognosis of ESCA. UBE2B exhibited significant upregulation and was found to be correlated with survival outcomes in ESCA as well as other cancer types. Additionally, UBE2B was observed to be involved in various biological pathways linked to the development of ESCA, including TNF-a signaling via NF-κB, epithelial-mesenchymal transition, inflammatory response, and hypoxia. Moreover, immune-related pathways like B cell activation (GO: 0042113), B cell receptor signaling pathway (GO: 0050853) and B cell mediated immunity (GO:0019724) were also involved. It was found that high expression of UBE2B was correlated with the increase of several kinds of T cells (CD8 T cells, Th1 cells) and macrophages, while effector memory T cell (Tem) and Th17 cells decreased. Furthermore, UBE2B showed potential as a prognostic biomarker for ESCA, displaying high sensitivity and specificity. Notably, proliferation and migration in ESCA cells were effectively suppressed when the expression of UBE2B was knocked down. Conclusions: To summarize, this study has made a discovery regarding the importance of gaining new insights into the role of UBE2B in ESCA. UBE2B might be an oncogene with good ability in predicting and diagnosing ESCA. Consequently, this discovery highlights the feasibility of targeting UBE2B as a viable approach for treating patients with ESCA.


Assuntos
Carcinoma , Neoplasias Esofágicas , Humanos , Prognóstico , Oncogenes , Linfócitos B , Neoplasias Esofágicas/genética , Biomarcadores , Enzimas de Conjugação de Ubiquitina/genética
16.
Cell ; 187(7): 1574-1577, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552606

RESUMO

Discoveries of the roles of RAS oncogenes in cancer development four decades ago opened the door to proving that tumor development is driven by somatic mutations' altering the genomes of cancer cells. These discoveries led to illusions about the simplicity of cancer pathogenesis and how cancer could be cured.


Assuntos
Genes ras , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Oncogenes , Mutação
17.
Commun Biol ; 7(1): 383, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553628

RESUMO

Hepatocellular carcinoma (HCC) is a molecularly heterogeneous solid malignancy, and its fitness may be shaped by how its tumor cells evolve. However, ability to monitor tumor cell evolution is hampered by the presence of numerous passenger mutations that do not provide any biological consequences. Here we develop a strategy to determine the tumor clonality of three independent HCC cohorts of 524 patients with diverse etiologies and race/ethnicity by utilizing somatic mutations in cancer driver genes. We identify two main types of tumor evolution, i.e., linear, and non-linear models where non-linear type could be further divided into classes, which we call shallow branching and deep branching. We find that linear evolving HCC is less aggressive than other types. GTF2IRD2B mutations are enriched in HCC with linear evolution, while TP53 mutations are the most frequent genetic alterations in HCC with non-linear models. Furthermore, we observe significant B cell enrichment in linear trees compared to non-linear trees suggesting the need for further research to uncover potential variations in immune cell types within genomically determined phylogeny types. These results hint at the possibility that tumor cells and their microenvironment may collectively influence the tumor evolution process.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Filogenia , Oncogenes , Mutação , Microambiente Tumoral/genética
18.
Mol Cell ; 84(7): 1365-1376.e7, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452764

RESUMO

Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin. We show that coordinate disruption of four CTCF motifs in the boundary fuses the adjacent TADs, allows the ANO1 enhancer to contact FGF3, and causes its robust induction. High-resolution micro-C maps reveal specific contact between transcription initiation sites in the ANO1 enhancer and FGF3 promoter that quantitatively scales with FGF3 induction such that modest changes in contact frequency result in strong changes in expression, consistent with a causal relationship.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Oncogenes , DNA/química
19.
Nat Commun ; 15(1): 2531, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514704

RESUMO

YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).


Assuntos
Ferroptose , Histonas , Histonas/metabolismo , Cromatina/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ferroptose/genética , Oncogenes
20.
Pathol Res Pract ; 256: 155258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522123

RESUMO

Colorectal cancer (CRC) is the third most common cancer in the world. According to several types of research, statins may impact the development and treatment of CRC. This work aimed to use bioinformatics to discover the relationship between statin targets and differentially expressed genes (DEGs) in CRC patients and determine the possible molecular effect of statins on CRC suppression. We used CRC datasets from the GEO database to select CRC-related DEGs. DGIdb and STITCH databases were used to identify gene targets of subtypes of statin. Further, we identified the statin target of CRC DEGs hub genes by using a Venn diagram of CRC DEGs and statin targets. Funrich and enrichr databases were carried out for the KEGG pathway and gene ontology (GO) enrichment analysis, respectively. GSE74604 and GSE10950 were used to identify CRC DEGs. After analyzing datasets,1370 genes were identified as CRC DEGs, and 345 targets were found for statins. We found that 35 genes are CRC DEGs statin targets. We found that statin targets in CRC were enriched in the receptor and metallopeptidase activity for molecular function, cytoplasm and plasma membrane for cellular component, signal transduction, and cell communication for biological process genes were substantially enriched based on FunRich enrichment. Analysis of the KEGG pathways revealed that the overexpressed DEGs were enriched in the IL-17, PPAR, and Toll-like receptor signaling pathways. Finally, CCNB1, DNMT1, AURKB, RAC1, PPARGC1A, CDKN1A, CAV1, IL1B, and HSPD1 were identified as hub CRC DEGs statin targets. The genetic and molecular aspects of our findings reveal that statins might have a therapeutic effect on CRC.


Assuntos
Neoplasias Colorretais , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Transdução de Sinais/genética , Bases de Dados Genéticas , Oncogenes , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...